
Reprogramming the sensory cortex for adaptive task learning

Abhishek Banerjee (University of Oxford)

Animals adapt their behaviour in response to variable changes in reward reinforcement. How 
animals employ specific behavioural strategies while learning tasks and how the prefrontal areas of 
the mammalian neocortex, especially the orbitofrontal cortex (OFC), contribute to such strategy-
based learning remain understudied. Using a tactile flexible learning task, longitudinal 2P-Ca2+ 
imaging and tensor component analysis combined with a novel method of temporal decoding, we 
revealed the crucial contribution of OFC and its interactions with hierarchically organised sensory 
areas. In my talk/poster, I will highlight neural circuit interactions between lateral OFC (lOFC) and 
a small ensemble of outcome/value-selective neurons in the primary somatosensory cortex (S1) 
during task reversal in mice (Nature 2020) and briefly discuss similar circuits in operation in 
cognitive tasks combined with fMRI/EEG measurements in humans (Nat. Comm. 2023; In prep). 
By implementing a Bayesian evidence accumulation model to analyse behavioural learning data in 
mice, we revealed multiple exploratory strategies animals employ during key task-learning phases. 
Silencing lOFC impairs strategy deployment during behavioural flexibility, highlighting the role of 
lOFC in leveraging prior knowledge supporting reward and error-guided learning (In prep). 
Furthermore, I will show evidence of how disinhibitory VIP interneurons in the OFC encode a 
context-prediction error signalling a loss of confidence that is mirrored in top-down signals 
modulating apical activity S1 pyramidal neurons. A proposed theoretical model will explain how 
contextual changes are detected in the brain and how a hierarchy of prediction errors in different 
cortical regions interact to reshape and update the sensory representation (Under review, Nat. 
Neurosci. 2024). Finally, I would argue that such feedback circuits would also be key targets for 
behavioural inflexibility seen in neurodevelopmental disorders (In prep). Taken together, our 
experiments shed light on the circuit mechanisms underlying predictive ‘teaching signals’ that drive 
adaptive changes in sensory cortices and in behaviour.



Emergence of a state of coherent bursting and power-law distributed avalanches
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Spontaneous brain activity contains rich dynamical structures such as neuronal

avalanches with power-law duration and size distributions. Despite extensive stud-

ies, the underlying mechanism of these dynamical patterns remain to be fully under-

stood. Using numerical simulations of networks of adaptive neurons with stochastic

input, we find that a state of coherent bursting and power-law distributed avalanches

emerges under suitable conditions. We show that coherent bursting occurs when ex-

citation is su!ciently strong and yet small enough to be balanced by adaptation,

and that the power-law distributed avalanches are direct consequences of the time-

dependent oscillatory population firing rate due to coherent bursting and stochastic

driving. When excitation is too weak, neurons exhibit irregular and independent

spiking and when excitation is too strong for the adaptation, neurons exhibit inco-

herent fast spiking, and in these two states, durations of the avalanches are exponen-

tially distributed. Our work thus shows that the rich dynamical patterns observed

in the brain can arise from collective stochastic dynamics of adaptive neurons.
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Fluctuation-learning relationship: fluctuation in the spontaneous dynamics determines the 
learning speed 

(presenting author) Tomoki Kurikawa, Future University Hakodate, 
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Learning speed is shaped by both neural dynamics and task structure, with growing 
experimental evidence linking variability in spontaneous neural activity before learning to 
learning performance. However, a unified theoretical framework explaining this relationship 
has been lacking. In this study, inspired by the fluctuation-response relation in statistical 
physics, we derive general formulae connecting spontaneous neural fluctuations to learning 
speed. We show that the initial learning speed is proportional to the covariance between 
spontaneous activity and the neural response to inputs, independent of the specific learning 
rule. For Hebbian learning, learning speed further depends on the variance of spontaneous 
activity along task-relevant directions̶specifically, the input and target axes. 
 
These results apply to a wide range of learning paradigms, including associative memory and 
input/output mapping tasks. Numerical simulations confirm the validity of our theoretical 
predictions across different network architectures, learning rules, and beyond the linear and 
full-rank assumptions used in the derivation. As a direct implication, learning is accelerated 
when task-relevant directions align with the dominant axes of spontaneous fluctuations, 
consistent with empirical findings from brain-computer interface and behavioral studies. 
 
Our framework provides a unified theoretical basis for understanding how the geometric 
relationship between pre-learning neural variability and task-relevant directions governs 
learning efficiency. This insight has broad implications for interpreting variability in neural 
systems and guiding the design of learning algorithms and neurotechnological interventions. 

 
Figure caption: a: model 
image in our study in 
left. Theoretically 
derived relationship 
between the 
spontaneous fluctuation 
and learning speed in 
right. 

b. schematic image of the derived relationship 
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Despite intense research on neural coding, it is still far from understood how sensory neurons 
encode signal information into spike sequences. Using different neuronal models, we have shown 
that single and coupled neurons can encode a subthreshold periodic signal (which on its own is 
incapable of generating spikes) by exploiting noise (stochastic electrical fluctuations that do not 
encode any information). Using a symbolic time series analysis method, we have found that the 
relative order of interspike intervals (ISIs) can encode signal information [1]. 

We have also found that this coding mechanism is plausible for neuronal ensembles, when they 
all perceive a subthreshold periodic signal [2]. Neuronal coupling is beneficial for signal encoding, 
since a sufficiently large ensemble is capable of encoding a signal of small amplitude, which could 
not be encoded when only one or two neurons perceive it. Interestingly, we found that a few 
random connections can significantly improve signal encoding. 

We have also performed experiments with an excitable laser that emits light pulses that have 
some statistical similarities to neuronal spikes [3], to analyze whether information can be encoded 
in sequences of optical spikes. Indeed, we found that the laser’s ISI sequences recorded under 
low- or high-frequency modulation tend to be located in different regions of a “feature space” [4] 
and therefore, information of the frequency of the signal applied to the laser is contained in the 
sequence of emitted optical spikes, which may be a new approach for spike-based information 
processing in neuromorphic photonic systems. 

[1] M. Masoliver and C. Masoller, “Subthreshold signal encoding in coupled FitzHugh-Nagumo 
neurons”, Sci. Rep. 8, 8276 (2018). 

[2] M. Masoliver and C. Masoller, “Neuronal coupling benefits the encoding of weak periodic 
signals in symbolic spike patterns”, Commun. Nonlinear Sci. Numer. Simulat. 88, 105023 (2020). 

[3] J. Tiana-Alsina, C. Quintero-Quiroz and C. Masoller, “Comparing the dynamics of periodically 
forced lasers and neurons”, New J. of Phys. 21, 103039 (2019). 

[4] B. R. R. Boaretto, E. Macau, C. Masoller, “Characterizing the spike timing of a chaotic laser 
by using ordinal analysis and machine learning”, Chaos 34, 043108 (2024). 
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Perceptual decision-making frequently requires accumulating noisy sensory inputs as evidence to
execute rapid, reliable choices. Neural recordings from the lateral intra-parietal area in humans and
primates performing perceptual decision-making tasks highlight evidence accumulation mechanisms,
often modeled as drifted di!usions. In those experiments, participants were exposed to computer-
generated randomly fluctuating stimuli whose motion was unrelated to any physical phenomenon. To
better characterize the statistical processes underlying decision-making, we performed experiments
where human participants visualized fluctuations of physical nonequilibrium stationary states and
analyzed responses in the context of stochastic thermodynamics [1]. Forty-five participants viewed
hundreds of movies of a particle undergoing drifted Brownian dynamics and were tasked with judg-
ing the motion as leftward or rightward in a reliable manner (see Fig. 1). Overall, the results
uncover fundamental performance limits consistent with thermodynamic trade-o!s [2]; specifically,
lower entropy production rates lead to longer decision times. Moreover, to achieve a given accu-
racy, participants required more time than predicted by Wald’s optimal sequential probability ratio
test, indicating suboptimal integration of the available information. Given this suboptimality, we
develop an alternative account equipped with non-Markovian evidence integration and a memory
time constant, and find tight fits. Our results suggest that humans adapt their memory relaxation
time to the dissipation of the observed phenomenon, favouring memory over momentary evidence
for e!ective decisions in scenarios where stimuli are far from equilibrium. Our study illustrates
that perceptual psychophysics using stimuli rooted in nonequilibrium physical processes provides a
robust platform for understanding how the human brain makes decisions on stochastic information
inputs.
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FIG. 1: Sketch of the experimental setup. Forty-five human participants were instructed to judge the net motion direction
(left versus right) of a moving disk displayed on a computer screen by pressing the right (left) arrow key on a keyboard. The
snapshots of the disk’s motion are generated from stochastic simulations of a overdamped Langevin dynamics.

[1] A. Durmaz, Y. Sarmiento, G. Fortunato, D. Das, M. E. Diamond, D. Bueti, and É. Roldán. Human perceptual decision
making of nonequilibrium fluctuations. arxiv, 2023. https://arxiv.org/abs/2311.12692.

[2] É. Roldán, I. Neri, M. Dörpinghaus, H. Meyr, and F. Jülicher. Decision making in the arrow of time. Phys. Rev. Lett., 115
(25):250602, 2015.
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Abstract:  

Spontaneous brain activity organizes into scale-free bursts called “neuronal avalanches”, 
suggesting that neuronal dynamics are poised near criticality between quiescence and 
hyperactivity, with deviations from this state associated with pathological conditions. Recently, 
using maximum entropy arguments, time-averaged experimental neuronal data have been 
described using Ising-like models at unit temperature, allowing the study of neuronal networks 
under an analogous thermodynamic framework. 

In this work [1], [2], we apply the maximum entropy method to an integrate-and-fire model that 
simulates neuronal avalanches and can be tuned to subcritical, critical, and supercritical 
regimes, offering a controlled setting for the application of this method to spontaneous 
neuronal activity, as opposed to experiments. We show that the network dynamics are well-
described by Ising-like models with different distributions of disorder in their parameters, 
depending on the state of criticality of the networks. By introducing a temperature-like 
parameter 𝑇, we explore the behavior of the Ising-like models in temperature space, finding that 
for critical and supercritical networks the specific-heat curve has a maximum near 𝑇 = 1 and 
increases with system size, suggesting a phase transition. We verify that these results are 
consistent with analogous maximum-entropy analyses on neuronal data from disinhibited rat 
cortical cultures [2]. 

 

 

[1] T. S. A. N. Simões, C. I. N. S. Filho, H. J. Herrmann, J. S. Andrade, and L. de Arcangelis, 
“Thermodynamic analog of integrate-and-fire neuronal networks by maximum entropy modelling,” 
Sci. Rep., vol. 14, no. 1, p. 9480, Apr. 2024, doi: 10.1038/s41598-024-60117-3. 

[2] T. S. A. N. Simões, F. Lombardi, H. J. Herrmann, and L. de Arcangelis, “Maximum entropy modeling of 
spontaneous neuronal activity in the subcritical, critical and supercritical regimes,” 2025.  (preprint)  
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The brain integrates vast environmental information, with cortical encoding relying on interactions between excitatory and

inhibitory populations [1, 2]. Understanding how their activity shapes the information-processing capabilities of the brain is a

long-standing question in neuroscience. By focusing on a paradigmatic architecture, we show, both analytically in an exactly

solvable regime and numerically for a nonlinear scenario, that the mutual information between an external input and the receiving

neuronal populations is controlled at various timescales by the balance between the excitatory and inhibitory couplings [3].

We model the activity of an excitatory and inhibitory subpopulation with Langevin equations

ω
dxµ

dt
= →rµxµ +

∑

ω→E,I

Aµωf(xω) + h(t) +
√

2Dµωεµ

where ω is the neural timescale, rµ the decay rate, εµ independent white noises, f an activation function, Aµω the synaptic

connectivity, and h(t) the external input.

At long timescales, the mutual information Ix,h vanishes for fast switching inputs (ωinput ↑ ω) but is bounded for slow inputs

(ωinput ↓ ω) as I(b)(ϑ/4) ↔ Ix,h ↔ I(b)(ϑ) , where I(b)(ϑ) = →
∑M

i=0 ϖ
st
i log

[∑M
j=0 ϖ

st
j e↑(j↑i)2ε

]
with ϖst

i stationary distribution of

the switching input and ϑ =
!h2

4Dr

[r + w(k → kc)][2r2 + (3k → 1)w + (k2 + 1)w2
]

w2(k → kc)(2r(k → kc) + (k2 + 1)w)
depending on excitation (w) and inhibition (k)

strength. These bounds tighten near the edge of stability, collapsing to the input’s entropy as k ↗ kc.
At short times, in the inhibition-stabilized regime (w > 1), stronger excitation accelerates response. Sensitivity, defined as:

ϱx,h =
ς2Ix,h(t)

ςt2

∣∣∣∣
t=tstim

=
φ2
h

2D

[r + w(k → kc)][2wk2c + r(k + 1)]

2r(k → kc) + w(1 + k2)
peaks at optimal inhibition kmax(w) > 1. Since kc < kmax(w),

this reveals a trade-o” between encoding speed and accuracy.

Overall, our findings advance our understanding of how connectivity shapes information encoding in neuronal dynamics.

[1] R. Quian Quiroga and S. Panzeri, “Extracting information from neuronal populations: information theory and decoding approaches,”

Nature Reviews Neuroscience, vol. 10, no. 3, pp. 173–185, 2009.
[2] A. Sanzeni, B. Akitake, H. C. Goldbach, C. E. Leedy, N. Brunel, and M. H. Histed, “Inhibition stabilization is a widespread property

of cortical networks,” Elife, vol. 9, p. e54875, 2020.
[3] G. Barzon, D. M. Busiello, and G. Nicoletti, “Excitation-inhibition balance controls information encoding in neural populations,” Phys.

Rev. Lett., vol. 134, p. 068403, Feb 2025.

FIG. 1. (a) Sketch of the model with excitatory (E, green) and inhibitory neurons (I, blue). (b-c) A switching input hi = i!h stimulates

the excitatory population over a timescale ωinput. For ωinput → ω , neural populations cannot resolve inputs, while for ωinput ↑ ω , activity

peaks around di”erent input strengths. (d) Mutual information is zero for fast inputs but increases sharply when ωinput ↑ ω . (e-f)

Information is maximized at the edge of stability (k ↓ kc), converging to the input entropy Hinput. (g-h) Nonlinear results align with the

linear regime for small !h but di”er at larger values. (i) Dynamics of mutual information with constant stochastic input. (j) Sensitivity

peaks at kmax(w) > kc. (k) Greater inhibition (k) enhances short-term response, while long-term information is maximized by reducing k

near kc. Parameters: D = 1/2, r = 1, ω = ωinput = 1, w = 2, k = 1.1, !h = 2.5, εh = 1, unless stated otherwise.
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Abstract 

The cerebral cortex operates in a state of restless activity, even in the absence of external stimuli [1,2]. 
Collective neuronal activities, such as neural avalanches[3] and collective oscillations[4], are also found 
under resting conditions, and these features have been suggested to support sensory processing and  brain 
readiness for rapid responses [2]. The rat barrel cortex and thalamus circuit, with its somatotopic 
organization for processing whisker movements, provides a powerful system to explore the interplay 
between spontaneous and evoked activities. 

To characterize the resting state circuits, we perform multi-electrode recordings in both rats' barrel cortex 
and thalamus through a neural probe, both during spontaneous activity and activity after controlled whisker 
stimulation. We decompose the LFP signals into their frequency contents and we analyze avalanches’ 
distributions by detecting events in MUAs activity.  We then employ a mesoscopic firing rate model, fitted 
on real data [5], to understand the observed phenomomenology. 

During spontaneous activity, we find 10-15 Hz oscillations in the barrel cortex nested with slow 1-4 Hz 
oscillations, as well as power-law distributed avalanches, modulated by the slow oscillation.  We then 
record neural activity during controlled whisker movements to confirm that the 10-15 Hz barrel circuit is 
amplified after whisker stimulation. We finally show how the thalamic-driven firing rate model can describe 
the entire phenomenology observed and predict the response to whisker stimulations. 

mailto:benedetta.mariani@unipd.it
mailto:mattia.tambaro@studenti.unipd.it
mailto:alessandro.leparulo@unipd.it
mailto:stefano.vassanelli@unipd.it
mailto:samir.suweis@unipd.it


Our results show that even during spontaneous activity the rat barrel cortex displays a rich dynamical state 
that includes avalanches and oscillations, that are amplified after the whisker stimulation. 

 

 

Figure. Experimental setup and example of the quantities that are analyzed. (a) Neural probe. The neural 
probe used is a 32-channel, single shank, linear probe with a pitch between the electrodes of 200 𝜇𝑚. 
Among the total 32 channels, 30 are inserted in the brain, spanning a barrel column, a subcortical area, and 
part of the ventral posteromedial nucleus (BPN) of the thalamus. (b) In the bottom, an example of a 10-
second long raster plot (obtained by identifying events in the MUAs activity) is shown; the stimulation of 
the whisker is at time zero. On the top of the raster plot two main frequency components (intrinsic mode 
functions (IMF) 2 and 4) that contribute to the local field potentials are shown: the one with frequencies 
between 1 and 4 Hz and the one with frequencies between 7 and 15 Hz. (c) A time frequency analysis in the 
barrel cortex after whisker stimulation is shown, averaging over all the trials. Oscillations below 4 Hz appear 
to be present during the whole recordings, and oscillations around 11 Hz appear after the stimulation. 

• References: 

[1] Raichle M. E. (2011), https://doi.org/10.1089/brain.2011.0019 

[2] Smith, S. M., et al (2009), https://doi.org/10.1073/pnas.0905267106 

[3] Beggs, J. M., & Plenz, D. (2003), https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003 

[4] Singer W. (2018), https://doi.org/10.1111/ejn.13796 

[5] Pinto, D. et al (1996), https://doi.org/10.1007/BF00161134 
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Echo-state-networks (ESN) [1,2] are known for their remarkable property of producing prescribed

autonomous dynamics by learning a simple feedback to a large recurrent random network. The aim of

learning is to obtain a vector of output synaptic weights w such that the linear combination of network

unit rates z(t) =
P

j wjr[xj(t)]) reproduces, as best as possible, a desired function f(t). ESN with simple

firing rate units serve as useful conceptual models for how the brain produces movement [2] and for

the role of the thalamo-cortical loop [3]. However, the principles that underly the seemingly miraculous

success of learning remain incompletely understood. Here, we describe a precise theory of learning in

the regime where the recurrent network evolution is stable and the feedback z(t) is weak. In this weakly

nonlinear regime, we show that learning the output weights w amounts to i) positioning the eigenvalues

of the linear dynamics at locations close to those of the Fourier frequencies of f(t) and ii) constraining

the weakly nonlinear dynamics to converge to the correct amplitudes for these Fourier modes. We further

provide analytical predictions for when the nonlinear dynamical attractors are stable, corresponding to

successful learning that is strongly network size dependent. We expect our theory to be applicable to

various generalizations of the simplest setting of randomly connected firing rate units with, for instance,

more complex dynamical units, or more structured networks with di↵erent unit classes.
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Echo-state-networks (ESN) [1,2] are known for their remarkable property of producing prescribed

autonomous dynamics by learning a simple feedback to a large recurrent network. They have served as

conceptual models for how the brain produces movement [2] and continue to inspire the design of various

artificial dynamical devices [3]. However, the principles that underly their seemingly miraculous success

remain incompletely understood. Here, we develop a weakly nonlinear theory of ESN that explains this

success in the regime where the recurrent network evolution is stable and the feedback is weak.

We analyze the prototypical network of N recurrent units (see Figure. 1) described by

dxi

dt
= �xi + g

�

j

Mijr(xj) + bi

�

j

wjr(xj) (1)

where M is a gaussian random matrix , b is a random “feedback” vector and r(x) is a nonlinear “activa-

tion” function, taken as usual to be tanh(x) for simplicity. The aim of the learning procedure is to choose

the vector of output synaptic weights w such that z(t) =
P

j wjr[xj(t)]) reproduces, as best as possible,

a desired function f(t).
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Figure 1. Left: Network schematic (adapted from [2]); (Center) Function f to be learnt (green) and network
approximation z (red); (Right) Spectrum of the linear dynamics (N=100).

When the amplitude of f(t) is small, the ESN operates in a weakly nonlinear regime. We show that

the learning of the output weights w amounts to i) positioning the eigenvalues of the linear dynamics

at locations close to those of the Fourier frequencies of f(t) and ii) constraining the weakly nonlinear

dynamics to converge to the correct amplitudes for these Fourier modes. We further provide analytical

predictions for when the nonlinear dynamical attractors are stable corresponding to successful learning

that is strongly N -dependent. We expect our theory to be applicable to various generalizations of Eq. (1),

for instance based on other dynamical units [3], or for more structured networks with di↵erent unit classes.
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Figure 1. Left: Network schematic (adapted from [2]); (Center) One period of the function f to be learnt (green)
and its network approximation z (red); (Right) Spectrum of the linear dynamics after learning showing 4 slow
modes (N=100).
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Reliable computation is thought to rely on a robust mapping of input to an output, also in the brain. However,

even if in response to a stimulus the firing-rate of neurons in cortex can be relatively robust, both experimental and

theoretical arguments suggest that spiking activity in the cortical microcircuit forms a strongly chaotic system. What

is the e!ect of spike-chaos on dynamics and computation? Is spike-chaos "just noise" or altogether di!erent?

We seek to systematically answer this question by casting reservoir computing in the language of kernel regression,

and explore the kernel shape in the presence of spike-chaos. This kernel fully determines the e!ect of chaos at the

level of spike-times and firing-rates on the function prior implemented by the reservoir.

For simple random binary- and rate-networks we compute the kernel analytically using a 2-replica dynamical mean-

field theory. Spike-chaos leads to a sharp peak in the kernel function, which acts as an e!ective L2-regularizer.

Spiking neurons therefore intrinsically handle outliers in a robust fashion, and this is similar to regularization by

noise. However, over short times on the scale of 100ms their chaotic dynamics di!ers drastically from noisy dynamics:

Input representations are expanded rapidly, facilitating fast non-linear computation, as opposed to noisy dynamics

which only destroys information. In this way spike-chaos may support rapid computation on the scale of perceptual

recognition times, while regularizing the representation similarly to e!ective noise over longer times.



Critical scaling exponents of hippocampal activity predict 
spatial memory performance  

 
The critical brain hypothesis suggests that operating at “criticality” would endow 
the neural substrate with maximal information processing and storage capabilities. 
Experimental support for this hypothesis is, however, limited, stemming primarily 
from the power-law distributions in neural activity patterns, neuronal avalanches, 
and the scaling of coarse grained activity in the recently introduced 
phenomenological renormalization group. Despite the circumstantial support for 
the critical brain hypothesis, the functional role of criticality, and critical scaling in 
particular, remains heavily debated.  

In this study, we investigated the potential association between measures of 
criticality and behaviour using the activity of simultaneously recorded hippocampal 
CA1 neurons in freely moving rats. Rats performed a spatial learning and recall 
task interleaved with sleep sessions. This setup allowed us to quantify learning 
performance and memory retention while, at the same time,  measure signatures 
of criticality, in both sleep and waking sessions. The application of the 
phenomenological renormalization group to our data showed a collapse of activity 
distributions, as well as scaling of the covariance matrix spectrum, correlation 
times, probability of silence and the activity variance. Most importantly, during 
sleep sessions that followed learning, the scaling exponent for the activity 
variance was significantly correlated with memory retention. This is the first report 
experimentally linking critical properties of neural activity during sleep with 
functionally-relevant behavioral performance. Therefore, our results broadly 
support and simultaneously sharpen the scope of the brain criticality hypothesis.  
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Abstract:  
 
Neurons and the synapses connecting them are inherently heterogeneous in their structure and 
electrophysiological response properties. To understand how brain function arises from 
networks of neurons, we must understand how the heterogeneity of neural tissue relates to that 
function. In this line of work, we provide novel insight into the computational role of neural 
heterogeneity by directly relating heterogeneity-induced changes in neural dynamics to changes 
in neural population function.  
 
To this end, we derived a set of mean-field equations for spiking neural networks which allows 
us to determine a direct relationship between the heterogeneity of spike thresholds and the 
resulting low-dimensional network dynamics (Gast et al. 2023 PRE). Building on this model, we 
found that the heterogeneity of inhibitory interneurons plays a crucial role in shaping the 
dynamic regimes of neural circuits: heterogeneous inhibitory interneuron populations preserve 
the dynamic repertoire of local excitatory populations, whereas homogeneous interneurons 
overwrite excitatory dynamic repertoires and facilitate synchronized dynamics (Gast et al. 2024 
PNAS). Furthermore, we discovered that neural heterogeneity directly controls the encoding 
capacity of populations of recurrently coupled excitatory neurons by affecting the multistable 
dynamic regime of the population.  
 
Going beyond our published work, we recently identified opposing roles of synaptic and neural 
heterogeneity for controlling the dynamical regimes of neural networks (see Fig.1). Using the 
framework of low-rank RNNs, we discuss how neuromodulatory control of neural vs. synaptic 
heterogeneity can be leveraged for learning, computation, and task switching.  
 



 
Figure 1: Differential Effects of Neural vs. Synaptic Heterogeneity on Low-Rank RNNs. All results were 
obtained in randomly initialized RNNs (  and ) subject to white noise input. Top row: 𝑁 = 2000 𝑛 = 200
Exemplary network dynamics were generated for two different levels of neural heterogeneity , where ∆
neuromodulatory control of synaptic heterogeneity was slowly increased from  to . Bottom σ =  0 σ =  3
row: Synaptic heterogeneity acts as the main control parameter to destabilize RNN dynamics and induce 
a transition to chaotic dynamics. Neural heterogeneity has a stabilizing effect, making the transition to 
chaos less abrupt. Neural heterogeneity makes the computational capacity of the system more stable to 
small changes in synaptic heterogeneity, at the cost of a reduction in the overall computational capacity.     
 
 


